Advanced parallel Fortran

A. Shterenlikht

Mech Eng Dept, The University of Bristol
Bristol BS8 1TR, UK, Email: mexas@bristol.ac.uk

12th November 2017

1/44

http://coarrays.sf.net

Fortran 2003

«0)>» «Fr «=>»

Fortran 2008

» Vars with [| are coarray variables.

» Most variables can be made into coarrays. Among exceptions
are variables of types C_ PTR, C_.FUNPTR and
TEAM_TYPE (Fortran 2015) from the intrinsic module
ISO_C_BINDING.

Fortran 2008 runtime

» Concurrent asynchronous execution of multiple identical
copies of the executable (images).

» Number of images can be set at compile or run time.

» Different options in Cray, Intel, GCC/OpenCoarrays compilers.

«O» «F>» «=)r» «E)»

DA 4/44

Course outline

> coarray syntax and usage, remote operations

> images, execution segments, execution control,
synchronisation

» DO CONCURRENT construct

> allocatable coarrays

» termination

> dealing with failures

> collectives, atomics, critical sections, locks

> (briefly) upcoming Fortran 2018 standard - teams, events,
further facilities for dealing with image failures.

5/44

Fortran coarrays

v

Native Fortran means for SPMD (single program multiple
data) parallel programming

v

Over 20 years of experience, mainly on Cray

v

Fortran standard since Fortran 2008 [1], Many more features
added in Fortran 2015 [2, 3]

Supported on Cray, Intel, GCC/OpenCoarrays

v

6/44

http://www.opencoarrays.org

Images

iso_fortran_env is the intrinsic module, introduced in Fortran
2003, and expanded in Fortran 2008. Named constants:
input_unit, output_unit, error_unit.

All 1/0 units, except input_unit, are private to an image.
The runtime environment typically merges output_unit and
error_unit streams from all images into a single stream.

> input_unit is preconnected only on image 1. -

DA 7/44

Coarray syntax

«O> <Fr 4=

«=

Coarray basic rules

» Any image has read/write access to all coarray variables on all
images.

> |t makes no sense to declare coarray parameters.

» The last upper cobound is always an %, meaning that it is only
determined at run time.

» corank is the number of cosubscripts.

» Each cosubscript runs from its lower cobound to its upper
cobound.

» New intrinsics are introduced to return these values: lcobound
and ucobound

Remember: lcobound, ucobound.

9/44

Cosubscripts 1

» An image can be identified by its image number, from 1 to
num_images, or by its cosubscripts set.

> this_image with no argument returns image number of the
invoking image.
» this_image with a coarray as an argument returns the set of

cosubscripts corresponding to the coarray on the invoking
image

» image_index is the inverse of this_image. Given a valid set of
cosubscripts as input, image_index returns the index of the
invoking image.

» There can be cosubscript sets which do not map to a valid
image index. For such invalid cosubscript sets image_index
returns 0.

Remember: num_images, this_image, image_index.

10/44

Cosubscripts 2

«4O> 4F > «Er «E)»

Cosubscripts - logical arrangement of images

1]
2
2] |
31
47
12 S|
-2 6] |
! = 123 45
0 8
1 o | 1
2 o | 2
i p z

i, p and z are all scalar coarrays, but with different logical arrangement across images

«O» «Fr <

> <

» E VAl 12/44

Cosubscripts - logical arrangement of images

1 2 3 4 :
-2 s
-1 :
0 S 1 23456 7 8 9
1 :1
2 g
i p z

=] = - E E DA 13/44

Corank 3 for 3D models

integer :: i(n,n,n) [3,2,%x] integer :: i(n,n,n) [4,4, %]

on 18 images results in a logical ar- on 64 images results in a logical ar-
rangement of images as (3 x 2x 3) rangement of images as (4 x4 x 4)

14/44

Remote calls

Syntax without [] always refers to a variable on the invoking image.

«O» «F»r» «=>»

Execution segments and synchronisation

> A Coarray program consists of one or more execution segments.
> The segments are separated by image control statements.

» If there are no image control statements in a program, then this
program has a single execution segment.

» sync all is a global barrier, similar to MPI_Barrier.

[m] = = =

SYNC ALL image control statement

> If it is used on any image, then every image must execute this
statement.

» On reaching this statement each image waits for each other.

> lts effect is in ordering the execution segments on all images.

All statements on all images before sync all must complete
before any image starts executing statements after sync all.

17/44

Coarray segment rules 1

» From [1]:
If a variable is defined on an image in a segment, it
shall not be referenced, defined or become undefined
in a segment on another image unless the segments
are ordered.

» A (simple) standard conforming coarray program should not
deadlock or suffer from races.

» All coarray programs implicitly synchronise at start and at
termination.

18/44

SYNC IMAGES image control statement 1

» More flexible means of image control.

» sync images takes a list of image indices with which it must synchronise:

by sync images statement on image 3, e.g.:

» There must be corresponding sync images statements on the images referenced

with all other images:

> Asterisk, %, is an allowed input. The meaning is that an image must synchronise

In this example all images must synchronise with image 1, but not with each
other, as would have been the case with sync all.

DA

19/44

SYNC IMAGES image control statement 2

When there are multiple sync images statements with identical
sets of image indices, the standard sets the rules which determine
which sync images statements correspond. From [1]:

Executions of SYNC IMAGES statements on images M
and T correspond if the number of times image M has
executed a SYNC IMAGES statement with T in its image
set is the same as the number of times image T has
executed a SYNC IMAGES statement with M in its
image set. The segments that executed before the SYNC
IMAGES statement on either image precede the segments
that execute after the corresponding SYNC IMAGES
statement on the other image.

20/44

SYNC IMAGES - swapping a value between 2 images

» How many execution segments are there on each image?

» Which sync images statements correspond?

«4O> 4F > «Er «E)»

Swapping a value between 2 images - image 1

«O» «F»r» «=>»

« =)

DA

22/44

Swapping a value between 2 images - last image

«O» «F»r» «=>»

« =)

DA

23/44

Swapping a value between 2 images - other images

«O» «F»r» «=>»

New Fortran 2008 construct: DO CONCURRENT

» For when the order of loop iterations is of no importance. The
idea is that such loops can be optimised by compiler.

integer :: i, al(100)=0, a2(100)=1
do concurrent(i=1, 100)
al(i) =i I valid , independent

a2(i) = sum(a2(1l:i))! invalid,
I order is important
end do

» The exact list of restrictions on what can appear inside a
do concurrent loop is long. These restrictions severely limit
its usefulness.

» Potentially a portable parallelisation tool, there might or might
not be a performance gain, depending on the implementation.

25 /44

Implementation and performance

» The standard deliberately (and wisely) says nothing on this.

» A variety of parallel technologies can be used - MPI, OpenMP,
SHMEM, GASNet, ARMCI, DMAPP, etc. As always,
performance depends on a multitude of factors.

» The standard expects, but does not require, that coarrays are
implemented in a way that each image knows the address of
all coarrays in memories of all images, i.e. using symmetric
memory:

some image image 5

addr a addr

i(: i

xb5a r
X X i(2)
(1) xf0f
x0e i(2)

xfOf xf3d

26/44

Example: calculation of 7 using the Gregory - Leibniz series

» Each image sums the terms beginning with its image number and
with a stride equal to the number of images. Then image 1 sums
the contributions from all images.

10 ® 7 10

time,s —@—
speed-up —¥—

time, s
speed-up

I

1 | | | 1
1 2 4 8 16 32 64

images

27/44

Calculation of 7 - comparing coarrays, MPIl, OpenMP and
DO CONCURRENT

The partial 7 loop, and the total 7 calculation.
1. Coarrays

«O» «F»r» «=>»

Calculation of 7 - comparing coarrays, MPIl, OpenMP and
DO CONCURRENT

3. DO CONCURRENT

4. OpenMP

Calculation of 7 - comparing coarrays, MPIl, OpenMP and

DO CONCURRENT

Coarray implementation is closest to MPI. Coarray collectives, e.g.
CO_SUM, are available already in Cray and GCC/OpenCoarrays

compilers.
Parallel Fortran shared ease flexibi- perfor-
method- stan- memory of use lity mance
/language dard
do concur- yes possibly easy poor uncertain
rent
MPI no yes hard high high

Table: A highly subjective comparison of Fortran coarrays, MPI, OpenMP

and Fortran 2008 do concurrent.

30/44

Allocatable coarrays

» The last upper codimension must be an asterisk on allocation, to
allow for the number of images to be determined at runtime:

» Coarrays must be allocated with the same bounds and cobounds on
all images (symmetric memory!).

DA

31/44

Allocatable coarrays

>

Allocation and deallocation of coarrays involve implicit image
synchronisation.

All images must allocate and deallocate allocatable coarrays
together.

All allocated coarrays are automatically deallocated at program
termination.

Allocatable coarrays can be passed as arguments to procedures.

If a coarray is allocated in a procedure, the dummy argument must
be declared with intent(inout).

The bounds and cobounds of the actual argument must match
those of the dummy argument.

subroutine coal(i, b, cob)

integer, allocatable, intent(inout) :: i(:) [:,:]
integer, intent(in) :: b, cob

if (.not. allocated(i)) allocate(i(b) [cob,x])
end subroutine coal

32/44

Coarrays of derived types with allocatable components

«4O> 4F > «Er «E)»

Termination

» normal and error termination.

> Normal termination on one image allows other images to finish their
work. stop and end program initiate normal termination.

» New intrinsic error stop initiates error termination. The purpose of
error termination is to terminate all images as soon as possible.

» Example of a normal termination:

o F = E E

DA 34/44

Error termination

continuing makes no sense.

> Use it for truly catastrophic conditions, when saving partial data or

«O» «F»r» «=>»

<

DA

35 /44

Dealing with (soft/easy) failures

> Use stat= specifier in sync all or sync images to detect whether
any image has initiated normal termination.

> If at the point of an image control statement some image has
already initiated normal termination, then the integer variable given
to stat= will be defined with the constant stat_stopped_image
from the intrinsic module iso_fortran_env .

> The images that are still executing might decide to take a certain
action with this knowledge:

=] F - = =

DA 36/44

Fortran 2018 collectives (Cray, GCC/OpenCoarrays)

> "A" does not need to be a coarray variable!
> "A" is overwritten on all images, or, if result_.image is given, then only on that
image:

«O» «F»r» «=>»

Atomics

» Fortran 2008: atomic_define, atomic_ref

» Fortran 2018 added: atomic_add, atomic_and, atomic_cas,
atomic_fetch_add, atomic_fetch_and, atomic_fetch_or,
atomic_fetch_xor, atomic_or, atomic_xor.

» Must define and reference atomic variables only through atomic
routines!

«O» «Fr <

it
v
i

DA 38/44

Atomics and SYNC MEMORY

» sync memory adds a segment boundary with no synchronisation.

«O» «F»r» «=>»

Critical sections

» A critical / end critical construct limits execution of a
block to one image at a time:

unpredictable.

» The order of execution of the critical section by images in

» Critical is a serial operation - bad for performance.

DA

40 /44

Locks

> A lock/ unlock construct. Locks are coarray variables of derived
type lock_type

> Use locks to avoid races on shared resources, e.g. global variables.

Further Fortran 2018 extensions

» Teams of images. Can create a team of a subset of all images,
do some work in the team, synchronise with just the team,
etc. FORM TEAM, END TEAM, CHANGE TEAM,

SYNC TEAM.

» Events. A more flexible way to synchronise. Can post events
(EVENT POST), wait for a specified number of events to
occur (EVENT WAIT), and query the event counter
(EVENT_QUERY).

» Facilities for detecting image failures (and possibly dealing
with them). New status value STAT_FAILED_IMAGE which
typically means hardware or system software failure. New
intrinsic functions: IMAGE_STATUS, STOPPED_IMAGES,
FAILED_IMAGES.

» See Bill Long's article [3] for more details.

42 /44

Books with coarray examples

v

M. Metcalf, J. Reid, M. Cohen, Modern Fortran explained,
Oxford, 7 Ed., 2011

» W. S. Brainerd, Guide to Fortran 2008 programming,
Springer, 2015

I. Chivers, J. Sleightholme, Introduction to Programming with
Fortran, Springer, 3 Ed., 2015

A. Markus, Modern Fortran in practice, Cambridge, 2012

v

v

v

R. J. Hanson, T. Hopkins, Numerical Computing with Modern
Fortran, SIAM, 2013

N. S. Clerman, W. Spector, Modern Fortran: style and usage,
Cambridge, 2012

v

43 /44

https://global.oup.com/academic/product/modern-fortran-explained-9780199601417
http://www.springer.com/us/book/9781447167587
http://www.springer.com/gp/book/9783319177007
http://www.cambridge.org/gb/academic/subjects/computer-science/scientific-computing-scientific-software/modern-fortran-practice
http://bookstore.siam.org/ot134
http://www.cambridge.org/gb/academic/subjects/computer-science/scientific-computing-scientific-software/modern-fortran-style-and-usage

Coarray resources

>

vV vy VvYyVvYyy

comp.lang.fortran usenet group - many participants, few
experts, any topic - coarrays, OOP, libraries, etc.

WG5 Fortran standards
COMP-FORTRAN-90 mailing list

Compiler forums and mailing lists, e.g. GCC, Intel...
ACM SIGPLAN Fortran Forum journal
lan Chivers, Jane Sleightholme, Compiler Support for the
Fortran 2003 and 2008 Standards Revision 21, ACM
SIGPLAN Fortran Forum 36 issue 1, APR-2017, p.21-42:

Fortran 2008

Path

Absoft | Cray | g95 | gfortran | HP | IBM | Intel | NAG | Oracle PGI
Features scale
Compiler 14 8.4.0 52 1513 [17.0 |61 |8.7,32 6.0 |164
version number
Submodules N Y N, 201 N |Y Y N N N N
Coarrays Y P Y, 301 N |N Y N N Y N

Regularly updated

4444

https://wg5-fortran.org
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=comp-fortran-90
http://dl.acm.org/citation.cfm?id=J286
http://dx.doi.org/10.1145/3022868.3022870

[1] ISO/IEC 1539-1:2010. Fortran — Part 1: Base language, International Standard.
2010. http://j3-fortran.org/doc/year/10/10-007r1.pdf.

[2] ISO/IEC CD 1539-1. Fortran — Part 1: Base language, International Standard.
2017. http://j3-fortran.org/doc/year/17/17-007r2.pdf.

[3] B. Long. Additional parallel features in Fortran. ACM Fortran Forum, 35:16-23,
2016. DOI: 10.1145/2980025.2980027.

4444

http://j3-fortran.org/doc/year/10/10-007r1.pdf
http://j3-fortran.org/doc/year/17/17-007r2.pdf
http://dx.doi.org/10.1145/2980025.2980027

